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Abstraet. The universal bifurcation property of the Hénon map in parameter space is studied
with symbolic dynamics. The universal-L region is defined to characterize the bifurcation
universality. It is found that the universal-L region for relatively small L is not restricted to
very small b values. These results show that the fact that universal sequences with short period
can be found in many nonlinear dissipative systems is also a universal phenomenon.

1. Infroduction

One of the standard ways of investigating the dynamics of physical systems is by exploiting
their universal (system-independent) property [1-8]. The best understood transition
sequence is the period-doubling cascade, which has been observed in a variety of physical
systems. Beyond the accumulation point for the period-doubling sequence there is chaos.
Two decades ago Metropolis et al [1] that there is an ordered sequence of distinct periodic
windows, each of which occurs for some range of control parameter, within the chaotic
region for unimodal maps, x,.+1 = f(&, x;). They have called this sequence the U-sequence
since the ordering of the windows is system independent. Remarkably, this universality is
also observed in systems with many degrees of freedom both experimentally [2,3,8] and
theoretically [4-7] although the phase portraits of these two- or high-dimensional system
still exhibit very complex behaviour which is clearly not one-dimensional or close to one-
dimensicnal. It has been found that the periodic windows interspersed in chaotic region for
these systems are ordered in a systematic way that is similar to those of one-dimensional
~ (1D) maps. The most striking and detailed observation is obtained in the Lorenz equations:

X =10(y — x}
y=rx—xz—y 4))
z=xy - 8z/3.

On the parameter r axis with 45 < r < 400, all the 68 periodic windows of the Lorenz
equations found can fit into those of a 1D antisymmetrical map with only one exception
[9]. Experimentally, even though the Belousov—Zhabotinskii reaction involves more than
30 chemical species, it exhibits complex bifurcation behaviour that is modelled well by 1D
maps [3].
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Despite these numerical and experimental observations, the underlying mechanism for
the universal property is not fully understood. The motivation of this paper is to present
an approach towards interpreting all these experimental and numerical observations and
exploring their himitations. We will take the Hénon map [10]

{x,,+1=1~ax,%+y,, -

Ynt1 = bxy

as an example. The bifurcation structure of the Hénon map in the two-dimensional parameter
(@, b) space has been extensively discussed [11,12]. In this paper, we will use symbolic
dynamies [1, 14-20] of 1D mappings and 2D mappings to illustrate the universal topological
property of the Hénon map at seiected parameters by considering the unstable periodic
orbits embedded in its chaotic attractor. Two topological quantities & and L are defined to
characterize this universal topological property. Then we discuss the universal bifurcation
property of the Hénon map in 2D parameter space (a, ) by defining universal-L regions in
which the Hénon map exhibits 1D bifurcation behaviour to period L. It is remarkable to
find that the universal-L region for relative small L is not restricted to very small b values.
We will also present two examples of ordinary differential equations (ODEs), the Rossler
equations [13] and the forced Brusselator [4], to demonstrate the validity and robustness of
our approach. These results show that the fact that universal sequences with short period can
be found in many experiments or numerical calculations on nonlinear dissipative systems
is also a universal phenomenon.

The paper is organized as follows. In section 2, we review the basic property of 1D
unimodal maps. The universal bifurcation property and its limitations of the Hénon map
in the 2D parameter (a, b) space is studied in section 3. To demonstrate the validity of the
method presented in section 3, the universal bifurcation property of the Réssler equations
and the forced Brusselator in a definite parameter axis ig investigated in section 4, Finally,
in section 5 we give our conclusion.
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Figure 1. The logistic map x,1) = | — px? with pp == 1.754 88 exhibits a 3-cycle of the type
10C.
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2. Universal sequences in 1D unimodal maps

By using the symbolic dynamics of 1D mappings, Metropolis ef a! (MSS) have already
shown that the dynamics of unimodal 1D maps of the interval [—1, 1] is embodied in the
U-sequence of periodic windows [1, 14, 15]. Figure 1 shows a typical case. The extremum
is denoted by a letter C. Each periodic window of the map can be labelled by a symbolic
sequence of O’s and 1’s that mark the Jocation (to the left or right of C ) of the successive
iterates of the initial point C. For example, the only windows with period 5 are 1012C,
1021C, and 10°C (1012C represents the periodic window (1012C)™ hereafter). Indeed, we
can define an ordering [14, 15] for these symbolic sequences referring to the natural order in
the interval [—1, 1]. These ordering rules are consistent with the ordering of a real number
o defined for a sequence S{x) with an initial point x as follows [16]

a(S@) =) w2 : » ®
=1
with [16]
i 5;=0
0 j=1

i = { { for ; {mod 2).
Z oy =1
j=1

Since the symbolic sequence K=8(C), also called the kneading sequence, acquires a maximal
@ in this metric representation, a symbolic sequence S(x) corresponds to a real trajectory if
and only if it satisfies - :

(o™ (S(x))) < a(K) m=0,1,2,... @)

where o denotes the shift operator. With this admissibility conditicn, we ¢an generate all the
admissible periodic orbits for a given kneading sequence K. The kneading sequence changes
as the controlling parameter alters. - Since kneading sequences correspond to orbits coming
from C, they should also satisfy the above condition. Thus we obtain the admissibility
condition for the K themselves: a symbolic sequence K can be a kneading sequence if and

only if it satisfies ’ ’ ’

@™ (K)) € aK) m=0,12.... 5)

When K is a pertodic string, K corresponds to a periodic window. From equation (5), we
can generate all the possible periodic windows, It can be checked that there are only three
period-5 windows in those listed above.

With the ordering rules in equation (3), all periodic windows can be ordered to vield
the U-sequence. In the logistic map, this U-sequence is consistent with the increasing u
order which is listed in table 1 up to period 7.

3. Universal sequences in 2D Hénon maps

The Hénon map (2) has been extensively studied by using symbolic dynamics [16-19]. The
set of all ‘primary’ tangencies between stable and unstable manifolds determines a binary
generating partition which divides the attractor into two parts marked by letters 0 and 1.
Any trajectory is encoded by a bi-infinite string S(x) = ... 5up .. .5=150 0 5152, Sn vty
where s, denotes a letter for the nth image, s_, a letter for the mth preimage, each is either



3904

H P Fang

Table 1. Symbolic sequences for periodic windows of the Hénon map along two different
parameter axes and that for the forced Brusselator equations. The axis I (fong dashes in figure 4)
and axis II {dashes dots) are two axes in and out of the universal-7 region of the Hénon map,
on which a complete and incomplete U-sequence is found respectively.

a range

. Brusselator?
No. Period Word b=0 Axis [ Axis Il w
0 0 C 0-0.749 1.032565-1.164538 none
2 1C 0.75-1.249 1.164539-1.332034 none 0.45-0.544
2x2 101C 1.25-1.367 1.332035-1.409 865 none 0.545-0.5777
2 6 10111C  1.4747-1.47973 1.499840-1,495505 none 0.58249-0.582 51
3 7 101111C  1.57472-1.57541 1.585850-1.585225 1.521515-1.522540
4 5 1011C 1.6244-1.62843 1.635395-1.631 640 1.588650-1.594 165 0.5845-0.5843
5 7 101101C  1.67396-1.6744 1.679020-1.678610 1.651 665-1.652290
6 3 10C 1.75-1.76853 1.763210-1.743 840 1,776 860-1.792900 0.5947-0.654
2x3 10010C 1.76854-1.77722 1.772255-1.763215 1.792920-1.800525 0.6545-0.7025
7 7 100101C 1.8323-1.832139 1.835474-1.835567 1.811364-1.811581
8 3 1001C 1.86059-1.861 36 1.863083-1.863841 1.843810-1.844705 0.7068-0,7115
g 7 100111C  1.8848-1.88483 1.886869-1.886911 1.870425-1.870470
0l 6 100F1C  1.90726-1.90736 1.909005-1.909 120 1.894 790-1.894 915 (.718-0.7185
00 7 100110C 1.92715-1.92716 1.925261-1.925289 1.939390-1.939415
2 4 106C 1.94056-1.94153 1.938 829-1.939827 1.952015-1.952945 0.7345-0.792
13 7 100010C 1.95371-1.95371 1.952122-1.952 138 1.964545-1.964555
4 6 10001C  [.96677-1.9668 1.968064-1.968 099 1.956760-1.956795 none
15 7 100011C  1.977179-1.977184 1.978379-1.978385 1.967795-1.967795
16 5 1000C 1.98541-1.985468 1984 101-1.984 160 none 0.8259-0.8675
7 7 100001C 1.991814-1.991818 1.992925-1.992928 1.982968-1.982969
18 6 10000C  [.996375-1.896379 1995150-1.995153 none 0.90135-0,923
19 7 100000C  1.999096 1,997 8§90--1.997 891 none

0 or 1, the bold dot indicates the ‘present’ position. In order to extend the grammar for
unimodal maps to this map, a ‘backward’ variable is defined as [16]

BESE) =Y w2~

with

Vi =

i=1

for

—Z(l —5)=0
j=0

{O for < !
1
[o
Vv =
1

(mod 2)

{mod 2}

®

forb=>0

for b < 0.

For this 2D map, each primary tangency C is associated with a bi-infinite kneading sequence
K (with the first backward letter 5o undetermined which may be 0 or 1) and two symmetrical
points (@(K), S_(K)} and (@(K), 8.(K) = 1 — _(K)) in the symbolic plane corresponding
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to sg = 0 and 1 respectively [18]. Analogously to those in unimodal maps, for all admissible
points (¢, B) with 8 € [B_(K), B.(K)], @ should be less than a(K) and thus the pruning
front [16] is obtained by cutting out rectangles {x, Ble > &(K), 8 € [B-(K), B+(K)i} for
all points on the partition, The union of these rectangles gives the fundamentatly forbidden
zone. Consequently, the grammar for a word admissible or forbidden in this map can be
expressed as: a bi-infinite word is admissible if and only if all its shifts never fall into the
fundamentally forbidden zone [16, 18]. It is clear that there are infinitely many kneading
sequences {corresponding to infinitely many priznary tangencies) in a 2D map to determine
the admissibility condition for a word, while there is only one kneading sequence in a 1D
map. -

0.15

-0.15 L

Figure 2. The strange atiractor of the Hénon map for («, £) = (1.4, 0.16). The bold curves
outline the strange attractor. The diamonds are the ‘primary’ tangencies, The datted line
connecting them divides the full attractor into two subsets marked by 0 and 1.

3.1. Universality in the Hénon map

Figure 3 shows a typical symbolic plane, (a, #) = (1.4, 0.16). The corresponding attractor
is shown in figure 2 which has a complicated structure. Its fractal dimension is 1.16 £0.03.
Numerically 203 kneading sequences are found as shown in figure 2. It is found that
"the minimal and maximal of all the forward parts of these kneading sequences start with
Kmin = 101111010101 and Ky = 101111011111 respectively, corresponding to a minimal
and maximal o-values oy, = 0.837560 and o, = 0.838466 of all these kneading
sequences. We define two quantities § and L as

8 = Clmax — Cmin >= 0.000 906 : ')

= —[log, 8] = 10 ®

where [log, 8] denotes the integer part of log, 8. It is clear that § = 0 and L — 400
in the 1D Hmit (b =.0). For (@, b) = (1.4,0.16), an unstable periodic orbit with length

n £ L-= 10 cannot tell the difference between these kneading sequences. Indeed, no
symbolic string with length # < L lies in the interval between K, and K, Thus for
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Figure 3. (2) The symbolic plane of the Hénon map for (a, b) = (1.4,0.16). (b) An erlarged
part of the symbolic plane.

the unstable periedic orbits with length n < L, the grammar is completely determined by
a symbolic string K., which is 1011110101 or 1011110111, the first 10 letters of K, or
Kmax, that is, a word S{x) corresponds to an unstable periodic orbit of the Hénon map for
(a, b) = (1.4,0.18) if and only if it satisfies

a(e™(8(x)) < a(Ky) )

This is just the grammar for unimodal maps with a kneading sequence K;. Consequently
the unstable periodic orbits of the Hénon map for (a, #) = (1.4, 0.16) can be generated as
that of unimodal maps with 2 kneading sequence Ky (see equation (4)). The only exception

m=01,2,....
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is the unstable periodic orbit K7° which cannot be determined by equation (9). We note
here that the Hénon 1pap is dwergent for 2 = 1.4 and b > 0.315.

As b decreases, L increases. It had already been shown [19] that . = 32 for
(a,b) = (1.4,0.05). In the 2D phase space, even for {a, &) = (1.4,0.05) the attractor
has a clear hook indicating that the map is two-dimensional. We emphasize that though the
attractors reveal a very complicated structure in the 2D phase space, the topologies for these
attractors may be very close to those in 1D maps in that the unstable pericdic orbits can be
generated with only one kneading sequence to some degree.

Now we consider the universal bifurcation property of the Hénon map in parameter
space. Figures 4(a) and (#) show the isoperiodic lines [11,12] for all the nine period-7
windows. Numerically we find that I < 7 for all the parameters & and b in the region
between the two bold full curves shown in the figuref. We call this region the ‘universal-7
region’ hereafter. Thus all the periodic orbits with length < 7 of the Hénon map in this
universal-7 region can be determined with only one kneading sequences as in those of 1D
unimedal maps. Consequently, in this region there is a perfect MSS sequence up to period
& 7 along any axis provided that the axis is never tangent to any isoperiodic lines. These
axes are, in a sense, the same as the axis of & = 0 (corresponding to the logistic map). We
present an example of these axes in figure 4 (line I, long dashes). The periodic windows
on this axis are listed in table 1. It is clear that they share the same universal feature as 1D
unimodal maps do up to period 7. We can also obtain the universal-M region numerically
for M =35, 6, 8, 9.... in which there are MSS sequences for period € M along any axes
provided that they are never tangent to any isoperiodic Iines for period < M.

In figore 4 we also show that the borders for the Hénon map exhibit an attracting set
" with initial points (xp, yo) which are very close to the original point (0, 0). Comparing
these borders we can say that the universal-7 region is not restricted to very small b values.
Thus it is very probable that we will obtain an MSS sequence for a relative short period
(say, period 7) in the full 2D parameter plane of the Hénon map,

3.2. Incomplete U-sequence in the Hénon map

In fact, even on an axis outside the universal region, the Hénon map can exhibit
approximately 1D behaviour if the axis is never tangent to any isoperiodic lines. In table 1
we also show the periodic windows on the axis represented by the dash-dotted line (II) in
figure 4. It is clear that all of these words increase monotonically as @ increases except the
word 10001C and the period windows 10111C, 1000C, 10000C and 100000C are missing.

4. Applications to ODEs

The above idea can be extended to many other two- or higher-dimensional systems. Here
we only take the Rossler’s equations [13]

X=—y—x .
y=x-+ay (10
i=b+z(x —c)

1 Though we can calculate the L vatue for given parameters, the distribution of L values are mther irregrular so
that we do not give iso-L lines, A detailed discussion will be presented elsewhere.



3908 HP Fang

0.4CQ - T T

0.24

Q.08

-0.08F

~0.24

~0.40
1.30

0.010

0.006

0.002

~0.002

~(0.006

-0.010

1.8 1.9 20
2

Figure 4. The isopetiodic lines together with the universal-7 region (the region between two bold
curves) and the borders for the Hénon map exhibit an attracting set with initial points (xg, yg)
very close to original point {0, 0) (bold short dashes). The long dashes (I) and dashes-daot (II)
Tepresent two axes in and out of the universal-7 segion, ou which a complete and incomplete
U-sequence is found respectively. (#) An enlarged part.

and the forced Brusselator {4]

%= A—(B+1)x—x"y + acos(wt)
: 2 (11
y=Bx~—x"y

as examples.
The 2D attractor of the Rdssler’s equations is usually taken from a section of the 3D
flow on the half-plane ¥ = 0, x < 0 [13]. It has already been shown [19] that the unstable
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periodic orbits of the attractor can be generated with only one kneading sequence up to

period 12 for parameters ¢ = 2, d = 4 and a = 0.408 (corresponding to L = 12). We

find similar results (L =2 9) forc =2, d = 4 and 0.125 < a2 < 0.415. Table 2 shows the

periodic windows up to period 9 in descending a order along with their periods, words and

locations on the parameter axis. They are exactly consistent with part of the U-sequence
_from word C up to 1001011C.,

Table 2. The symbolic sequences for the pericdic windows of the Rossler’s equations.

No. Period Word 4 range
o ¢ c 0.125-0,335
2 1C 0.336-0.375
2x2 101C 0.376-0.3834

22 x2 1011I0IC  0.3836-0.3852

2 6 10111C 0.390 668-0.390 97
3 8 1011111C  0.393624-0.393 638
4 9 10111111C  0.395446-0.395 449
5 7 101111C  0.396633-0.396 676
6 9 10111101C  0.398(34-0.398 041
7 5 1011C 0.399948-0.399.966
3 9 10110101C  0.402150-0.402 194
9 7 101101C  0.403530-0.403 564
o1 9 10110111 0,404 690-0.404 691
g0 8 1011011C  0.406054
12 3 10C 0.409 12-0.41091
2x3  10010C 0.41092-0.41175
13 8 10010110 0.414432

~ The forced Brusselator had been extensively studied with the symbolic dynamics of 1D
maps [4]. An incomplete U-sequence up to period 6 along the axis A = 0.46 — 0.2 had
already been found by Hao ef af [4] which is also listed in table 1. Only the periodic window
10001C was missing. Our investigation on the Poincaré map with symbolic dynamics shows
that L = 2 for the parameter range 0.8056 < w < 0.8194 so that the U-sequence up to
period 6 might be incomplete. Recently, Liu [21] has confirmed that the missing period
10001C is pruned.

5. Conclusion and discossion

In this paper the universal bifurcation property and its limitations of the Hénon map in 2D
parameter space (z, b) is discussed with symbolic dynamics. Two topological quantities §
and L are defined to characterize this topological universality. In the universaf-L region, as
in the 1D unimodal map, there is a perfect MSS sequence up to period < L along any axis
provided that the axis is Aever tangent to any isoperiodic lines, though the phase portraits of
the Hénon map exhibit very complicated 2D behaviour. Extending this idea to many other
two- or higher-dimensional systems ensures that the symbolic dynamics of 1D mappings is
an effective technique for investigating the universality in these two- or higher-dimensional
systems and then the parameter for definite periodic motion may be predicted [22]. We have
presented two examples of ordinary differential equations (ODEs), the Réssler equations [13]
and the forced Brusselator [4], to demonstrate the validity and robustness of our approach.,

It should be noted that only the short period is considered although the theory presented
in this paper is also valid for higher period. In fact, in real experiments (or numerical studies
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of ODEs or PDEs), only short periodic orbits can be obtained. Qur investigation shows that jt
is not surprising that universal sequences with short period are found in many experiments,
Moreover, our result shows that the fact that universal sequences with short period can be
found in many nonlinear dissipative systems Is a universal phenomenon. This observation
ensures that the parameters of many periodic motions for many dynamical systems (such
as some fluid systems, e.g. [22]) can be well predicted.

In this paper we have also shown that even on an axis outside the vniversal region,
the Hénon map can exhibit approximately 1D behaviour. This observation interprets the
numerical results that in some nonlinear dynamical systems only incomplete U-sequences
has been found [4]. Anyway, our defined universal-M region gives a background for
interpreting the experimental and numerical observations that complete or imcomplete U-
sequences with short period can be found in many dissipative systems and to understanding
the limitations that 1D symbolic dynamics can be used to study two- or high-dimensional
dissipative systems.
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