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Universal bifurcation property of two- or 
higher-dimensional dissipative systems in parameter space: 
why does ID symbolic dynamics work so well? 

H P Fangt 
CCAST World Laboratory) PO Box 8730, Beijing, 100080. People’s Republic of China 
Institute of Theoretical Physics, PO Box 2735. Beijing. 100080, Peaple’s Republic of China 

Received 15 March 1995 

Abstract. The universal bifurcation properry of the H6non map in parameter space is studied 
with symbolic dynamics. The universal-L region is defined to characterize the bifurcation 
universality. It is found that the universal-L region for relatively small L is not restricted to 
very small b values. These results show that the fact that univenal sequences with shmi period 
can be found in many nonlinear dissipative systems is also a universal phenomenon. 

1. Introduction 

One of the standard ways of investigating the dynamics of physical systems is by exploiting 
their universal (system-independent) property [ 1-81. The best understood transition 
sequence is the period-doubling cascade, which has been observed in a variety of physical 
systems. Beyond the accumulation point for the period-doubling sequence there is chaos. 
Two decades ago Metropolis ef al [l] that there is an ordered sequence of distinct periodic 
windows, each of which occurs for some range of control parameter, within the chaotic 
region for unimodal maps, x.+l = f(p, x.). They have called this sequence the U-sequence 
since the ordering of the windows is system independent. Remarkably, this universality is 
also observed in systems with many degrees of freedom both experimentally [Z, 3.81 and 
theoretically 14-71 although the phase portraits of these two- or high-dimensional system 
still exhibit very complex behaviour which is clearly not one-dimensional or close to one- 
dimensional. It has been found that the periodic windows interspersed in chaotic region for 
these systems are ordered in a systematic way that is similar to those of one-dimensional 
(ID) maps. The most striking and detailed observation is obtained in the Lorenz equations: 

x = 1O(y - x )  

On the parameter r axis with 45 < r < 400, all the 68 periodic windows of the Lorenz 
equations found can fit into those o f ~ a  ID antisymmetrical map with only one exception 
[9]. Experimentally, even though the Belousov-Zhabotinskii reaction involves more than 
30 chemical species, it exhibits complex bifurcation behaviour that is modelled well by ID 

maps t31. 
t Mailing address: Department of Physics, Fudan University, Shanghai, 200433, People’s Republic of China 
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Despite these numerical and experimental observations, the underlying mechanism for 
the universal property is not fully understood. The motivation of this paper is to present 
an approach towards interpreting all these experimental and numerical observations and 
exploring their limitations. We will take the H h o n  map [lo] 

as an example. The bifurcation structure of the Hhon  map in the two-dimensional parameter 
(a, b) space has been extensively discussed [I 1,121. In this paper, we will use symbolic 
dynamics [I, 14-20] of ID mappings and 2D mappings to illustrate the universal topological 
property of the Henon map at selected parameters by considering the unstable periodic 
orbits embedded in its chaotic attractor. Two topological quantities 6 and L are defined to 
characterize this universal topological property. Then we discuss the universal bifurcation 
property of the Hinon map in 2~ paranieter space (a, b) by defining universal4 regions in 
which the H h o n  map exhibits 1D bifurcation behaviour to period L. It is remarkable to 
find that the universal-L region for relative small L is not restricted to very small b values. 
We will also present two examples of ordinary differential equations (ODES), the Rossler 
equations [13] and the forced Brusselator 141. to demonstrate the validity and robustness of 
our approach. These results show that the fact that universal sequences with short period can 
be found in many experiments or numerical calculations on nonlinear dissipative systems 
is also a universal phenomenon. 

The paper is organized as follows. In section 2, we review the basic property of 1D 
unimodal maps. The universal bifurcation property and its limitations of the Hdnon map 
in the zD parameter (U, b) space is studied in section 3. To demonstrate the validity of the 
method presented in section 3, the universal bifurcation property of the Rossler equations 
and the forced Brusselator in a definite parameter axis is investigated in section 4. Finally, 
in section 5 we give our conclusion. 

Figure 1. The logistic map x.+l = 1 -p i  with p == 1.75488 exhibits a 3-cycle of the type 
1oc. 
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2. Universal sequences in 1~ unimodal maps 

By using the symbolic dynamics of 1D mappings, Metropolis el al (Mss) have already 
shown that the dynamics of unimodal ID maps of the interval [-1,1] is embodied in the 
U-sequence of periodic windows [l ,  14,151. Figure 1 shows a typical case. The extremum 
is denoted by a letter C. Each periodic window of the map can be labelled by a symbolic 
sequence of 0 ' s  and 1's that mark the location (to the left or right of C ) of the successive 
iterates of the initial point C. For example, the only windows with period 5 are 10l2C, 
1021C, and 103C (101*C represents the periodic window (lOIZC)m hereafter). Indeed, we 
can define an ordering [14,15] for these symbolic sequences referring to the natural order in 
the interval [- 1,1] .  These ordering rules are consistent with the ordering of a real number 
a defined for a sequence S(x )  with an initial point x as follows [16] 

(3) 

with [16] 

Since the symbolic sequence K=S(C), also called the kneading sequence, acquires a maximal 
a in this metric representation, a symbolic sequence S(x )  corresponds to a real trajectory if 
and only if it satisfies 

a(um(S(x))) < a(K) m = 0 , 1 , 2 , .  . . (4) 
where U denotes the shift operator. With this admissibility condition, we can generate all the 
admissible periodic orbits for a given kneading sequence K. The kneading sequence changes 
as the controlling parameter alters.. Since kneading sequences correspond to orbits coming 
from C, they should also satisfy the above condition. Thus we obtain the admissibility 
condition for the K themselves: a symbolic sequence K can be a kneading sequence if and 
only if it satisfies 

a(u'"(K)) < a(K)  m = 0,1,2,. . . . , (5) 
When K is a periodic string, K corresponds to a periodic window. From equation (5), we 
can generate all the possible periodic windows. It can be checked that there are only three 
period-5 windows in those listed above. 

With the ordering rules in equation (3), all periodic windows can be ordered to yield 
the U-sequence. In the logistic map, this U-sequence is consistent with the increasing p 
order which is listed in table 1 up to period 7. 

3. Universal sequences in ZD Henon maps 

The Henon map (2) has been extensively studied by using symbolic dynamics [16-19]. The 
set of all 'primary' tangencies between stable and unstable manifolds determines a binary 
generating partition which divides the attractor into two parts marked by letters 0 and 1. 
Any trajectory is encoded by a bi-infinite string S(x) = . . .s-,. . .s-~so slsz.. .s,. . ., 
where s, denotes a letter for the nth image, s-, a letter for the mth preimage,kach is either 



3904 H P Fang 

Table 1. Symbolic sequences for periodic windows of the Hhon map along WO different 
parameter axes and that for the forced BNSSelatOr equations. The axis I (long dashes in figure 4) 
nnd axis I1 (dashes dos) a x  two ax= in and out of the universal-7 region of h e  %on map, 
on which a complete and inwmpkte U-sequence is found respectively. 

a range 
BmselaIo8 

No. Period Word b = O  Axis I Axis I1 0 

0 0  
2 
2 x 2  

2 6  
3 7  
4 5  
5 7  
6 3  

7 7  
8 5  
9 1  

01 6 
00 7 
12 4 
13 7 

2 x 3  

14 6 
15 7 
16 5 
17 7 
18 6 
19 7 

C 0-0.749 1.032565-1.164538 none 
IC 0.75-1249 1.164539-1.332034 none 0.45-0.544 
lOlC 1.25-1.367 1.332035-1.409 865 none 0.545-05777 
101 1 IC 1.4747-1.47973 1.499 840-1.495505 none 058249458251 
IOllllC 157472-1.57541 358586&1.585225 1.521515-1.522540 
IO1 1C 1.6244-1.62843 1.635395-1.631 640 1.588650-1594 165 058454.5848 
101 lOlC 1.673 96-1.6744 1.679020-1.678610 1.651 665-1.652290 
IOC 1.75-1.768 53 1.763210-1.743 840 1.776 860-1.792900 059474.654 
lOOlOC 1.768 54-1.777 22 1.772 255-1.763 215 1.792 920-1.800 525 0.65454.7025 
IOOlOlC 1.83E-1.83239 1.835474-1.835567 1.811 364-1.81158l 
lOOlC 1.86059-1.861 36 1.863083-1.863 841 1.843 810-1.844705 0.70684.7115 
1001 1 IC 1.8848-1.88483 1.88686%1.886 91 1 1.870425-1.870470 
iOOllC 1.90726-1.90736 L909005-1.909 120 1.894790-1.894915 0.718-0.7185 
IOOllOC 1.927 15-1.927 16 1.925261-1.925289 1.939 3904.939415 
IOOC 1.94056-1.941 53 1.938829-1.939 827 1.952015-1.952945 0.7345-0.792 
IOOOIOC 1.95371-1.95371 1.952 172-1.952 138 1.964545-1.964555 
IOOOlC 1,96677-1.9668 1.968064-1.968099 1.956760-1.956795 none 
IOOOllC 1.977 179-1.977 184 1.978379-1.978 385 1.967795-1.967795 
IOOOC 1.98541-1.985468 1.984 101-1.984 160 none 0.8259-0.8675 
IOWOIC 1.991 81&l.991818 1.992925-1.992928 1.982968-1.982969 
IOOOOC 1.996375-1.996379 1.995 150-1.995 153 none 0.9015-0.923 
IOOOOOC 1.999096 1.997890-1.997891 none 

0 or 1, the bold dot indicates the 'present' position. In order to extend the grammar for 
unimodal maps to this map, a 'backward' variable is defined as [I61 

I: U; = 

C(1 - S j )  = 0 

C(1 - s j )  = 1 

j =O 

-i 
(mod 2) forb => 0 for . 

For this 2D map, each primary tangency C is associated with a bi-infinite kneading sequence 
K (with the first backward letter SO undetermined which may be 0 or 1) and two symmetrical 
points (cu(K), B-(K)) and (a(K), B+(Q = 1 - B - ( K ) )  in the symbolic plane corresponding 
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to so = 0 and 1 respectively [l81. Analogously to those in unimodal maps, for all admissible 
points (a, @) with @ E [@-(K), ,¶+(K)], a should be less than a(K) and thus the pruning 
front [161 is obtained by cutting out rectangles (CY, fila > u(K). f i  E [&(K), p+(K)]] for 
all points on &e partition. The union of these rectangles gives the fundamentally forbidden 
zone. Consequently, the grammar for a word admissible or forbidden in this map can be 
expressed as: a bi-infinite word is admissible if and only if all its shifts never fall into the 
fundamentally forbidden zone [16, 181. It is clear that there are infinitely many kneading 
sequences (corresponding to infinitely many primary tangencies) in a 2D map to determine 
the admissibility condition for a word, while there is only one kneading sequence in a 1D 
map. 

I 

-0.15 

X 

Figure 2. The strange attractor of the Hdnon map for (a, 6) = (1.4.0.16). The bold curves 
outline the strange attractor. The dilunonds are the 'primary' tangencies. The dotted line 
connecting them divides the full attractor into two subsets marked by 0 and 1. 

3.1. Universality in the Hinon map 

Figure 3 shows a typical symbolic plane, (a.  b) = (1.4,0.16). The corresponding attractor 
is shown in figure 2 which has a complicated shucture. Its fractal dimension is 1.16 f0.03. 
Numerically 203 kneading sequences are found as shown in figure 2. It is found that 
the minimal and maximal of all the forward parts of these kneading sequences start with 
K,i. = 101111010101 andK,, = 101111011111 respectively, corresponding toaminimal 
and maximal a-values CY*. = 0.837560 and am = 0.838466 of all these kneading 
sequences. We define two quantities 6 and L as 

(7) 
(8) 

where [log,6] denotes the integer part of log,& It is clear that 6 = 0 and L -+ +w 
in the ID limit (b  =~O). For (a ,  b) = (1.4,0.16), an unstable periodic orbit with length 
n < L - =  10 cannot tell the difference between these kneading sequences. Indeed, no 
symbolic string with length n Q L lies in the', interval between K,i. and K,. Thus for 

6 = a,, - amin = 0.000906 
L = -[log, 61 = 10 
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Y. I. " / I  Y .. .I Y ,a _ _  .-_ - _ _  .- - - ,.. .. .. .. .. ._ 1 

.. .sI ..- .. .-I) .. *. .. *. .. 
B 

I .. .. 
a. ?, .. .- 

0 'I 1 
0.8315 0.8385 

(I 

Figure 3. (a) The symbolic plane of the H6non map for (a, b) = (1.4.0.16). (b) An enlarged 
part of the symbolic plane. 

the unstable periodic orbits with length II < L, the grammar is completely determined by 
a symbolic string Kj, which is 1011110101 or 1011110111, the first 10 letters of Kmi. or 
K,,, that is, a word S(x)  corresponds to an unstable periodic orbit of the H6non map for 
(a, b) = (1.4,0.16) if and only if it satisfies 

u(u"(S(x))) < a ( K j )  m = 0,1,2,. . .. (9) 

This is just the grammar for unimodd maps with a kneading sequence Kj. Consequently 
the unstable periodic orbits of the Henon map for (a. b) = (1.4.0.16) can be generated as 
that of unimodal maps with a kneading sequence K, (see equation (4)). The only exception 
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is the unstable periodic orbit K,” which cannot be determined by equation (9). We note 
here that the HCnon map is divergent for a = 1.4 and b > 0.315. 

As b decreases, L increases. It had already been shown 1191 that L = 32 for 
(a ,b )  = (1.4,0.05). In the 2D phase space, even for ( u , b )  = (1.4.0.05) the attractor 
has a clear hook indicating that the map is two-dimensional. We emphasize that though the 
attractors reveal a very complicated structure in the 20 phase space, the topologies for these 
attractors may be very close to those in ID maps in that the unstable periodic orbits can be 
generated with only one kneading sequence to some degree. 

Now we consider the universal bifurcation property of the HCnon map in parameter 
space. Figures 4(u) and (6)  show the isoperiodic lines [ll, 121 for all the nine period-7 
windows. Numerically we find that L < 7 for all the parameters U and b in the region 
between the two bold full curves shown in the figure?. We call this region the ‘universal-7 
region’ hereafter. Thus all the periodic orbits with length < 7 of the HCnon map in this 
universal-7 region can be determined with only one kneading sequences as in those of LD 
unimodal maps. Consequently, in this region there is a perfect MSS sequence up to period 
6 7 along any axis provided that the axis is never tangent to any isoperiodic lines. These 
axes are, in a sense, the same as the axis of b = 0 (corresponding to the logistic map). We 
present an example of these axes in figure 4 (line I, long dashes). The periodic windows 
on this axis are listed in table 1. It is clear that they share the same universal feature as ID 
unimodal maps do up to period 7. We can also obtain the universal-M region numerically 
for M = 5, 6, 8, 9,. . . in which there are MSS sequences for period Q M along any axes 
provided that they are never tangent to any isoperiodic lines for period < M. 

In figure 4 we also show that the borders for the HCnon map exhibit an attracting set 
with initial points ( X O ,  yo) which  are^ very close to the original point (0,O). Comparing 
these borders we can say that the universal-7 region is not restricted to very small b values. 
Thus it is very probable &at we will obtain an MSS sequence for a relative short period 
(say, period 7) in the full 2D parameter plane of the HCnon map. 

3.2. Incomplete U-sequence in the HLnon mup 

In fact, even on an axis outside the universal region, the Hinon map can exhibit 
approximately ID behaviour if the axis is never tangent to any isoperiodic lines. In table 1 
we also show the periodic windows on the axis represented by the dash-dotted line (11) in 
figure 4. It is clear that all of these words increase monotonically as a increases except the 
word lOOOlC and the period windows 10111C. lOOOC, 1OOM)C and IOOOOOC are missing. 

4. Applications to ODEs 

The above idea can be extended to many other two- or higher-dimeusional systems. Here 
we only take the Rossler’s equations [13] 

Y -22 
) i = x + a y  
i = b + Z(X - C )  

x = -  

t Though we m calculate the L value for given parameters, the distribution of L values are rather inegular so 
that we do not give isc-L lines. A detailed discussion will be presented elsewhere. 
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1 .a 1.9 2.0 a 

Figure 4. The imperiodic lines together with the universal-7 region (the region betwen two bold 
curves) and the borders for the Henon map exhibit an mrncting set with initial points (q,, yo) 
very close IO original point (0.0) (bold short dashes). The long dashes (I) and dashes-dot (n) 
represent two axes in and out of the universal-7 region, on which a complete and incomplete 
U-sequence is found respectively. (b) An enlarged pat .  

and the forced Brusselator 141 

as examples. 
The 2D attractor of the Rassler’s equations is usually taken from a section of the 3D 

flow on the half-plane y = 0, x e 0 [13]. It has already been shown [I91 that the unstable 



Universal bifurcation properties 3909 

periodic orbits of the attractor can be generated with only one kneading sequence up to 
period 12 for parameters c = 2, d = 4 and a = 0.408 (corresponding to L 2 12). We 
find similar results (L 2 9) for c = 2, d = 4 and 0.125 c a < 0.415. Table 2 shows the 
periodic windows up to period 9 in descending a order along with their periods, words and 
locations on the parameter axis. They are exactly consistent with part of the U-sequence 
from word C up to 1001011C. 

Table 2. The symbolic sequences for the periodic Windows of the Riisssler’s equations. 

No. Period Word a range 

n 

2 
3 
4 
5 
6 
7 
8 
9 

01 
00 
12 

13 

0 
2 
2 x 2  
22 x 2 
6 
8 
9 
7 
9 
5 
9 
7 
9 
8 
3 
2 x 3  
8 

C 
IC 

~ ~ l 0 l C  
l0lllOlC 
l0l l lC 
1OlllllC 
1OllllllC 
l0l l l lC 
l0llllOlC 
IOllC 
Io11oloIc 
IOIlOlC 
lOIlOlllC 
l0llOllC 
1oc 
lO0lOC 
lO0lOllC 

0.125-0.335 
0.336-0.375 
0.376-0.3834 
0.3836-0.3852 
0.390668-0.390 97 
0.393624-0.393638 
0.395446-0.395 449 
0.395 638-0.396676 
0.398034-0.398 041 
0.399948-0.399 966 
0.402 190-0.402 194 
0.403 530-0.403 564 
0.404690-0.404691 
0.406054 
0.409 12-0.41091 
0.410924.411 75 
0.414432 

The forced Brusselator had been extensively studied with the symbolic dynamics of ID 
maps [4]. An incomplete U-sequence up to period 6 along the axis A = 0.46 - 0.20 had 
already been found by Hao eta! [4] which is also listed in table 1. Only the periodic window 
IOOOlC was missing. Our investigation on the’Poincar6 map with symbolic dynamics shows 
that L = 2 for the parameter range 0.8056 < OJ < 0.8194 so that the U-sequence up to 
period 6 might be incomplete. Recently, Liu 1211 has confirmed that the missing period 
l00OlC is pruned. 

5. Conclusion and discussion 

In this paper the universal bifurcation property and its limitations of the H6non map in 2D 
parameter space (a, b )  is discussed with symbolic dynamics. Two topological quantities 8 
and L are defined to characterize this topological universality. In the universaFL region, as 
in the ID unimodal map, there is a perfect MSS sequence up to period Q L along any axis 
provided that the axis is never tangent to any isoperiodic lines, though the phase portraits of 
the Htnon map exhibit very complicated 2D behaviour. Extending this idea to many other 
two- or higher-dimensional systems ensures that the symbolic dynamics of ID mappings is 
an effective technique for investigating the universality in these two- or higher-dimensional 
systems and then the parameter for definite periodic motion ‘may be predicted [22]. We have 
presented two examples of ordinary differential equations (ODES), the Rossler equations [13] 
and the forced BNsselator 141, to demonstrate the validity and robustness of our approach. 

It should be noted that only the short period is considered although the theory presented 
in this paper is also valid for higher period. In fact, in real experiments (or numerical studies 
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of ODES or PDEs), only short periodic orbits can be obtained. Our investigation shows that it 
is not surprising that universal sequences with short period are found in many experiments. 
Moreover, our result shows that the fact that universal sequences with short period can be 
found in many nonlinear dissipative systems is a universal phenomenon. This observation 
ensures that the parameters of many periodic motions for many dynamical systems (such 
as some fluid systems, e.g. [22]) can be well predicted. 

In this paper we have also shown that even on an axis outside the universal region, 
the HBnon map can exhibit approximately 1D behaviour. This observation interprets the 
numerical results that in some nonlinear dynamical systems only incomplete U-sequences 
has been found [4]. Anyway, our defined universal-M region gives a background for 
interpreting the experimental and numerical observations that complete or imcomplete U- 
sequences with short period can be found in many dissipative systems and to understanding 
the limitations that ID symbolic dynamics can be used to study two- or high-dimensional 
dissipative systems. 
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